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Compacité

Définition 1
Une partie A de E est dite compacte si toute suite d’éléments de A
possède au moins une valeur d’adhérence dans A.

Remarque: La définition d’une partie compacte s’appuie sur la
convergence de suites. Elle dépend donc de la norme utilisée.

Exercice 2: Soit F un sous-espace vectoriel de E , et A une partie
de F . Montrer que A est un compact de E si, et seulement si,
A est un compact de F .
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Compacité

Proposition 3
Une suite à valeurs dans une partie compacte est convergente si, et
seulement si, elle admet une unique valeur d’adhérence.

Proposition 4
Toute partie compacte est fermée et bornée.

Remarque: Si une suite (un) est telle qu’il existe α > 0 vérifiant :

∀(n, p) ∈ N2, n ̸= p =⇒ ||un − up|| ≥ α,

alors (un) ne possède aucune sous-suite convergente. Ainsi, pour
montrer qu’une partie A n’est pas compacte, il suffit d’exhiber une
suite d’éléments de A vérifiant la propriété ci-dessus.
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Compacité

Exercice 5: Soit E = R[X ], muni de la norme

∥P∥ =
n∑

k=0
|ak | si P(X ) =

n∑
k=0

akX k .

Notons A = B(0, 1) la boule unité fermée de E .

Justifier que A est une partie fermée et bornée, n’est pas com-
pacte.
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Compacité

Définition 6
On dit que A est BL-compact si, pour toute famille (Ui)i∈I
d’ouverts de E telle que K ⊂

⋃
i∈I Ui , il existe un sous-ensemble

fini J ⊂ I tel que:
A ⊂

⋃
i∈J

Ui .

Autrement dit, de tout recouvrement par des ouverts on peut
extraire un recouvrement fini.

Proposition 7
Si A est BL-compact de E , alors A est compact de E .

Remarque: La reciproque est aussi vraie (Exercice du TD).
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Compacité
Proposition 8
Toute partie fermée d’une partie compacte est compacte

Proposition 9
Soient E1, . . . , Ep des espaces vectoriels normés. Si A1, . . . , Ap
sont des parties compactes de E1, . . . , Ep respectivement, alors le
produit A1 × · · · × Ap est une partie compacte de l’espace produit
E1 × · · · × Ep (muni de la norme produit).

Exercice 10: Montrer que, dans (Kr , ∥ · ∥∞), une partie est
compacte si et seulement si elle est fermée et bornée.

Exercice 11: Montrer que l’ensemble suivant est une partie
compacte de Rn :

K =
{

(λ1, . . . , λn) ∈ (R+)n ∣∣ λ1 + · · · + λn = 1
}

.
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Compacité

Proposition 12
L’image d’un compact par une application continue est un compact

Remarque: Cette proposition entraîne que l’image par f de tout
fermé de E (où E est compact) est un fermé (une application
vérifiant cette propriété est dite fermée). Ceci est faux en général.

Proposition 13
Soit f : K → L une application continue et bijective. Si K est un
compact, alors f −1 : L → K est continue. Autrement dit, f est un
homéomorphisme.

Remarque: Pour toute fonction continue et bijective f : I → J , où
I, J sont des intervalles de R, l’application réciproque f −1 est
continue.
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Compacité

Proposition 14
Soit A une partie compacte non vide, toute application continue
f : A → R est bornée et atteint ses bornes : il existe x1, x2 ∈ A tels
que f (x1) = minx∈A f (x) et f (x2) = maxx∈A f (x).

Exemple 15: Si A est un compact non vide de E et x ∈ E , alors il
existe a ∈ A, tq d(x , A) = ||x − a||.

Exemple 16: Si A et B sont deux compacts non vide de E , alors il
existe a ∈ A et b ∈ B tq d(A, B) = ||a − b||.
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Compacité

Exercice 17: Considérons la fonction g : R2 → R définie par

g(x , y) = ex2+y2

1 + x2 + y2 .

1 Montrer que pour tout a ∈ R, il existe R > 0 tel que :

∀(x , y) ∈ R2 \ B(0, R), |g(x , y)| > a.

2 Justifier que g possède un minimum global.

Proposition 18
Toute application continue sur un compacte est uniformément
continue.
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Compacité en dimension finie
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Compacité en dimension finie

Proposition 19
Dans un espace vectoriel de dimension finie, toute suite bornée
possède au moins une valeur d’adhérence, i.e. admet au moins une
sous suite convergente.

Proposition 20
Les parties compactes d’un espace vectoriel de dimension finie sont
ses parties fermées bornées.

Proposition 21
Dans un espace vectoriel normé, tout sous-espace vectoriel de
dimension finie est un fermé.
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Equivalence des normes en dimension
finie
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Equivalence des normes en dimension finie

Proposition 22
Dans un espace de dimension finie, toutes les normes sont
équivalentes.
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Espaces de banach

Définition 23
On dit que (un)n∈N est une suite de Cauchy si

∀ε > 0, ∃N ∈ N, ∀p ≥ N, ∀q ≥ N, ||up − uq|| < ε.

On dit qu’un evn E est un espace de banach, si toute suite
de cauchy de E est convegente.

Proposition 24
1 Une suite convergente est une suite de Cauchy.
2 Une suite de Cauchy est bornée.
3 Une suite de cauchy qui admet une v.a est convergente.

Proposition 25
R est un espace de banach.
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Espaces de banach

Proposition 26
Rn est un espace de banach.

Proposition 27
Tout evn de dimension finie est un espace de banach.

Proposition 28
On considère X un ensemble non vide et B(X , E ) l’espace vectoriel
des fonctions bornées, définies sur X et à valeurs dans E . On
munit B(X , E ) de la norme ∥ · ∥∞ définie par

∀f ∈ B(X , E ), ∥f ∥∞ = sup
x∈X

∥f (x)∥.

Si l’espace vectoriel normé (E , ∥ · ∥) est un espace de banach, alors
l’espace (B(X , E ), ∥ · ∥∞) est aussi de banach.
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Espaces de banach

Proposition 29
Soit E un evn de banach et une application f : E → E
contractante, c’est-à-dire qu’il existe un réel k ∈ [0, 1[ vérifiant

∀(x , y) ∈ E 2, ||f (x) − f (y)|| ≤ k ||x − y ||.

Alors f admet un unique point fixe.
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Espaces connexes par arcs

Définition 30
Une partie A de E est dite connexe par arcs si, pour tout couple
(x , y) de points de A, il existe une application γ continue du
segment [0, 1] de R à valeurs dans A telle que : γ(0) = x et
γ(1) = y .

Exemple 31:
1 A est connexe par arcs s’il possède un point x0 que l’on peut

relier à tout autre point x ∈ A.

2 Si A est convexe, alors A est connexe par arcs.

Proposition 32
Les parties connexes par arcs de R sont les intervalles.
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Espaces connexes par arcs
Proposition 33
Soit A une partie connexe par arcs de E et f : A → F une
application continue. Alors f (A) est une partie connexe par arcs de
F .

Exemple 34: GLn(R) n’est pas connexe par arcs.

Proposition 35
Soit A une partie connexe par arcs de E et f : A → R une
application continue. Alors f (A) est un intervalle.

Exemple 36:
1 Une application continue injective d’un intervalle I de R vers

R est strictement monotone.
2 Soit f une fonction dérivable d’un intervalle I de R dans R. Si

f ′ prends des valeurs strictements négatives et strictement
positives, alors f ′ s’annule sur I.
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Espaces connexes par arcs

Proposition 37
Soit A ⊂ E une partie connexe par arcs. Toute application
f : A → F , localement constante, est constante.

Proposition 38
Si A ⊂ E est une partie connexe par arcs, toute partie non vide P
de A, à la fois ouverte et fermée dans A, est égale à A.
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Espaces connexes par arcs

Proposition 39
Soit A une partie non vide de E .

1 La relation sur A2 définie par

∀x , y ∈ A, x ∼A y ⇐⇒ ∃γ ∈ C([0, 1], A),
{

γ(0) = x
γ(1) = y

est une relation d’équivalence.
2 Les classes d’équivalence pour ∼A sont connexes par arcs. On

appelle ces classes composantes connexes par arcs.
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