
Calcul différentiel

EL BAKKALI EL KADI Taha

College of Computing
UM6P

EL BAKKALI Taha



Continuité des applications partielles
Soit f : R2 → R une fonction. Pour (x , y) ∈ R2, on note fx et fy
les applications partielles :

fx : R −→ R, t 7−→ f (x , t) et fy : R −→ R, t 7−→ f (t, y).

1 Soit (x , y) ∈ R2. Montrer que si f est continue en
(x , y) ∈ R2, alors ses applications partielles fx et fy sont
continues respectivement en y et en x .

L’objectif de la suite de l’exercice est de montrer que la
réciproque du résultat précédent est fausse. Soit f : R2 → R
la fonction définie par :

f (0, 0) = 0 et ∀(x , y) ∈ R2\{(0, 0)}, f (x , y) = xy
x2 + y2 .

2 Vérifier que, pour tout (x , y) ∈ R2, les applications partielles
fx et fy sont continues.

3 Montrer que, pourtant, l’application f n’est pas continue.
EL BAKKALI Taha



Dérivée suivant un vecteur, dérivées
partielles
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Dérivée suivant un vecteur, dérivées partielles

Dans tout le cours, on suppose que E et F sont des R-ev de dim
finie.
Définition 1
Soient E et F deux R-espaces vectoriels normés, U un ouvert de
E , et f : U ⊂ E → F une application. Soit a ∈ U et v ∈ E . Si la
fonction à variable réelle φ : t 7−→ f (a + tv) est dérivable en t = 0,
on dit que f est dérivable en a selon le vecteur v . On note alors

Dv f (a) = φ′(0) = lim
t→0
t ̸=0

f (a + tv) − f (a)
t .

Exemple 2: Si f est la fonction définie sur R2 par:

f (x , y) = x2 + 2y ,

alors: D(1,2)f (0, 0) = 4.
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Dérivée suivant un vecteur, dérivées partielles

Exercice 3: Soit f : R2 −→ M2(R) définie par

(r , θ) 7−→

(
r cos θ r sin θ
r sin θ −r cos θ

)
.

Vérifier que: D(1,1)f (0, 0) =
(

1 0
0 −1

)
.

Exercice 4: Soit f : Mn(R) −→ Mn(R), M 7−→ M2. Déter-
miner DH f (A) pour tous A,H ∈ Mn(R).
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Dérivée suivant un vecteur, dérivées partielles

Définition 5
Si B = (v1, . . . , vn) est une base de E , et f une fonction de U
ouvert de E dans F . Pour a ∈ U et j ∈ J1, nK, la j-ième dérivée
partielle de f en a dans la base B, notée :

∂j f (a) ou ∂f
∂xj

(a),

est, lorsqu’elle existe, la dérivée de f en a selon le vecteur vj .

Remarque: Sauf mention contraire, lorsque l’on parle de dérivées
partielles pour une fonction définie sur un ouvert de Rn, il est
sous-entendu que c’est par rapport à la base canonique.
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Dérivée suivant un vecteur, dérivées partielles

Exercice 6:
1 Considérons la fonction f : R2 → R définie par

f (x , y) =


xy

x2 + y2 si (x , y) ̸= (0, 0),

0 sinon.

Montrer que f admet des dérivées partielles en (0, 0) mais
que f est discontinue en (0, 0).

2 Considérons la fonction g : R2 → R définie par

g(x , y) =


y2

x si x ̸= 0,
0 sinon.

Montrer que g admet des dérivées suivant tout vecteur
mais que g est discontinue en (0, 0).
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Différentiabilité
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Différentiabilité
Définition et Proposition 7
Soit E et F deux R evn de dim finies, U un ouvert de E et a ∈ U.
Une application f : U → F est dite différentiable en a s’il existe
φ ∈ L(E ,F ) telle que:

f (a + h) = f (a) + φ(h) + o(∥h∥) lorsque h → 0.

Si φ existe, φ est unique et s’appelle la différentielle de f en a. On
la note df (a).

1 Si f est différentiable en tout point de U, on dit que f est
différentiable sur U et l’application

df : U → L(E ,F ), a 7→ df (a),

est appelée application différentielle de f .
2 Si df est continue, on dit que f est de classe C1.
3 Si f est linéaire, df (a) = f pour tout a ∈ E .
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Différentiabilité

Exemple 8: Soit f : I ⊂ R → F , où I est un intervalle ouvert de R.
Soit a ∈ I. On a :

1 f est différentiable en a si et seulement si f est dérivable en a.
2 Dans ce cas, on a :

f ′(a) = df (a)(1).
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Différentiabilité
Exemple 9:

1 Si (E , ∥ · ∥) est un espace euclidien et N : E → R+ est définie
par N(x) = ∥x∥2. Alors :

∀a ∈ E , ∀h ∈ E , dN(a).h = 2 ⟨h, a⟩.

2 Soit f : Mn(R) → Mn(R) définie par f (M) = M2. On a :

∀A ∈ Mn(R), ∀H ∈ Mn(R), df (A).H = AH + HA.

3 Soit f : C⋆ → C définie par f (z) = 1
z . On a:

∀a ∈ C⋆, ∀h ∈ C, df (a).h = − h
a2 .
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Différentiabilité

Proposition 10
Une fonction différentiable en un point est continue en ce point.

Remarque: On rappelle que si f une fonction déf sur E de dim
finie, admet des dérivées partielles en a ∈ E , alors ceci n’implique
pas forcément que f est continue en a.

Proposition 11
Si f est différentiable en a, alors f est dérivable en a selon tout
vecteur v ∈ E , et on a :

Dv f (a) = df (a).v .
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Différentiabilité
Proposition 12
Soient E et F deux R-espaces vectoriels normés de dim finies, U
un ouvert de E , f : U ⊂ E → F , et soit B = (e1, . . . , en) une base
de E . Si f est différentiable sur U, alors les dérivées partielles de f
existent sur U, et pour tout a ∈ U on a :

∀i ∈ J1, nK,
∂f
∂xi

(a) = df (a).ei .

Remarque: Dans ce cas: Si f est différentiable en a.
1 On a:

df (a)(h) =
n∑

i=1
hi
∂f
∂xi

(a), où h =
n∑

i=1
hiei .

2 Le développement limité de f en a s’écrit:

f (a + h) = f (a) +
n∑

i=1
hi
∂f
∂xi

(a) + o(∥h∥).
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Matrice jacobienne
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Matrice jacobienne

Soient E et F deux R-espaces vectoriels normés de dim finie, U un
ouvert de E , f : U ⊂ E → F , et soit B = (e1, . . . , en) une base de
E et L = (v1, . . . , vm) une base de F . On note fi les composantes
de f dans cette base.
Proposition 13
f est différentiable en a ∈ U si et seulement si toutes ses fonctions
composantes sont différentiables en a. Dans ce cas, on a :

df (a) =
m∑

i=1
dfi(a) vi .
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Matrice jacobienne

Définition 14
Si f est differentiable en a, alors la matrice jacobienne de f en a
est Jf (a), définie par:

Jf (a) = mat
(
df (a)

)
B,L.

Proposition 15
Si f est differentiable en a, alors:

Jf (a) =
(
∂fi
∂xj

(a)
)

1≤i≤m,1≤j≤n
.

Remarque: Si f : U ⊂ Rn → Rm, alors la matrice jacobienne est,
par convention, définie relativement aux bases canoniques.
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Matrice jacobienne

Exercice 16: Considérons les applications suivantes :

1) f : R2 −→ R3, f (x , y) = (x + y2 + z , xy2z , x2z + xy),

2) g : R2 −→ R2, g(r , θ) = (r cos θ, r sin θ).

On admet pour le moment que f et g sont différentiables sur
R2.

Calculer Jf (x , y) et Jg(r , θ).
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Fonctions continûment differentiables
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Fonctions continûment differentiables
Soit B = (v1, . . . , vn) une base de E .

Définition 17
On dit que f est de classe C1 sur U si df est définie et continue
sur U.

Proposition 18
Soit E et F deux R-evn de dim finies et f : U ⊂ E → F une
fonction. Les assertions ci-dessous sont équivalentes.
(i) La fonction f est de classe C1 sur U.
(ii) Toutes les dérivées partielles de f sont définies et continues

sur U.
Dans les deux cas, pour tout a ∈ U et pour tout h ∈ E , on a:

df (a).h =
n∑

j=1
hj
∂f
∂xj

(a) si h = (h1, . . . , hn)B.
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Fonctions continûment differentiables

Exercice 19: On définit f : R2 → R par:f (x , y) = xy(x+y)
x2+y2 pour (x , y) ̸= (0, 0),

f (0, 0) = 0.

On note U = R2 \ {(0, 0)}.
1 Pour tout (x , y) ∈ U, calculer

∂f
∂x (x , y) et ∂f

∂y (x , y).

2 Est-ce que f est de classe C1 sur U ? Justifier votre
réponse.

3 Montrer que f n’est pas différentiable en (0, 0).
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Fonctions continûment differentiables

Définition 20
Sous réserve d’existence, on peut définir par récurrence sur p une
dérivée partielle d’ordre p par la relation

∂pf
∂xip · · · ∂xi1

= ∂

∂xip

(
∂p−1f

∂xip−1 · · · ∂xi1

)
.

une fonction f : U ⊂ E → F est dite de classe Cp si toutes ses
dérivées partielles jusqu’à l’ordre p existent et sont continues sur U.
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Opérations sur des fonctions
differentiables
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Opérations sur les fonctions differentiables

Proposition 21
Soient f et g deux fonctions de U dans F ainsi que λ et µ deux
réels.

Si f et g sont différentiables en a, alors l’application λf + µg
est différentiable en a et :

d(λf + µg)(a) = λ df (a) + µ dg(a).

Si f et g sont différentiables (respectivement de classe C1),
alors l’application λf + µg est différentiable (respectivement
de classe C1) et :

d(λf + µg) = λ df + µ dg .
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Opérations sur les fonctions differentiables
Soient F1, . . . ,Fq,G des espaces vectoriels réels de dimension finie.
Pour tout k ∈ {1, . . . , q} soit fk : U → Fk une fonction et
M : F1 × · · · × Fq → G une application multilinéaire. On définit :

M(f1, . . . , fq)(x) = M
(
f1(x), . . . , fq(x)

)
.

Proposition 22
Si f1, . . . , fq sont différentiables en a, alors l’application
g = M(f1, . . . , fq) est différentiable en a et pour tout h ∈ E :

dg(a) · h =
q∑

k=1
M
(

f1(a), . . . , fk−1(a), dfk(a) · h︸ ︷︷ ︸
k-ième place

, fk+1(a), . . . , fq(a)
)
.

Si f1, . . . , fq sont différentiables (respectivement de classe C1), alors
M(f1, . . . , fq) est différentiable (respectivement de classe C1).
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Opérations sur les fonctions differentiables

Exercice 23: Soient f1, . . . , fq des applications de classe C1 de
U dans R ou Mq(K). Montrer que le produit f1 · · · fq est de
classe C1 sur U et que, pour tout a :

d(f1 · · · fq)(a) =
q∑

k=1
f1(a) · · · fk−1(a) dfk(a)fk+1(a) · · · fq(a) .
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Opérations sur les fonctions differentiables

Exercice 24: Soit E un espace préhilbertien réel. Montrer la
différentiabilité et calculer la différentielle de l’application pro-
duit scalaire

Φ : E 2 → R, (x , y) 7−→ ⟨x , y⟩.

Proposition 25
Les applications polynomiales sur E sont de classe C1.
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Opérations sur les fonctions differentiables

Proposition 26
Soient E ,F ,G des R-espaces vectoriels normés de dim finies,
U ⊂ E et V ⊂ F deux ouverts, et deux applications

f : U ⊂ E → F , g : V ⊂ F → G

vérifiant f (U) ⊂ V . Si f est différentiable en a ∈ U et g
différentiable en f (a), alors g ◦ f : U → G est différentiable en a et
on a :

dg ◦ f (a) = dg(f (a)) ◦ df (a).

Si f est différentiable (respectivement de classe C1) et g
différentiable (respectivement de classe C1), alors g ◦ f est
différentiable (respectivement de classe C1).
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Opérations sur les fonctions differentiables

Exercice 27: On suppose que F est un espace euclidien.
On considère la fonction

ψ : F \ {0} −→ R, ψ(x) = ∥x∥ =
√

⟨x | x⟩.

1 Montrer que ψ est de classe C1 sur F \ {0}.
2 Calculer la différentielle dψ(x) en un point x ∈ F \ {0}.

Soit U ⊂ Rn un ouvert et f : U → R une fonction ne s’annulant
pas, différentiable en a ∈ U.

1 Montrer que la fonction g : U → R, g(x) = 1
f (x) est

différentiable en a.
2 Calculer la différentielle de g en a et vérifier que

dg(a) = − df (a)
f (a)2 ,

EL BAKKALI Taha



Opérations sur les fonctions differentiables

Proposition 28
Toute fonction rationnelle définie sur U, c’est-à-dire un quotient de
deux fonctions polynomiales, est de classe C1.

Exemple 29: On considère l’application

Inv : GLn(R) −→ Mn(R)
M 7−→ M−1.

Grâce à la formule classique M−1 = 1
det(M) Com(M)T , on voit

que les composantes de Inv sont des fonctions rationnelles, donc
de classe C1. Ainsi, l’application M 7→ M−1 est de classe C1 sur
GLn(R).
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Opérations sur les fonctions differentiables
Soit U ′ un ouvert de F , ainsi que f : U ⊂ E → F et g : U ′ → G
telles que f (U) ⊂ U ′. On note :

(x1, . . . , xp) les coordonnées dans la base B et donc ∂f
∂xj

les

dérivées partielles de f dans la base B, lorsqu’elles existent ;

(y1, . . . , yn) les coordonnées dans la base B′ et donc ∂g
∂yi

les

dérivées partielles de g dans la base B′, lorsqu’elles existent.

Proposition 30
On suppose f différentiable en a ∈ U et g différentiable en f (a).
En notant f1, . . . , fn les fonctions composantes de f dans la base
B′, on a, pour tout j ∈ J1, pK :

∂(g ◦ f )
∂xj

(a) =
n∑

i=1

∂fi
∂xj

(a) ∂g
∂yi

(f (a)).
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Opérations sur les fonctions differentiables

Exercice 31: Soit f : R2 → R une fonction différentiable. On
définit

g : R2 → R, g(x , y) = f (x + y , xy).

Déterminer, pour tout (x , y) ∈ R2, des formules explicites pour
∂g
∂x (x , y) et ∂g

∂y (x , y) en fonction de ∂f
∂u (x + y , xy) et ∂f

∂v (x +
y , xy).
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Opérations sur les fonctions differentiables

Proposition 32
Si f : U ⊂ Rn → V ⊂ Rm et g : V → W ⊂ Rp sont deux
applications différentiables, alors g ◦ f : U → Rp est différentiable
et, pour tout a ∈ U, on a :

J(g ◦ f )(a) = Jg(f (a)) · Jf (a).

Exercice 33: On pose

f (x , y , z) = (x + y2, xy2z) et g(u, v) = (u2 + v , uv , ev ).

Justifier la différentiabilité de f et de g , calculer les différen-
tielles de f , de g , de g ◦ f et de f ◦ g (pour ces deux dernières
fonctions, on utilisera deux méthodes).
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Gradient
Soit E est un espace euclidien et F = R. Rappelons que pour
toute forme linéaire φ sur E , il existe un unique v ∈ E tel que :

∀h ∈ E φ(h) = ⟨v , h⟩.

Donc si U ouvert de E et f : U ⊂ E → R est différentiable en
a ∈ Ω, alors il existe un unique v ∈ E tel que :

∀h ∈ E df (a) · h = ⟨v , h⟩.

Définition 34
Soit U un ouvert de E et f : U → R une fonction différentiable en
a ∈ Ω. Le gradient de f en a, noté ∇f (a), est l’unique vecteur
de E vérifiant :

∀h ∈ E df (a) · h = ⟨∇f (a), h⟩.
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Gradient

Proposition 35
On suppose E muni d’une base orthonormée B = (e1, . . . , en). Si
U ouvert de E et f : U → R est une fonction différentiable en
a ∈ U, alors:

∇f (a) =
n∑

j=1
∂j f (a) ej .

Proposition 36
On munit E = Rn du produit scalaire canonique. Si U ouvert de E
et f : U → R est une fonction différentiable en a ∈ U, alors :

∇f (a) =

∂1f (a)
...

∂nf (a)

 = (Jf )T .
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Gradient

Proposition 37
Soit U ouvert de E et f : U → R une fonction différentiable en
a ∈ U. La restriction à la sphère unité de la fonction h 7→ Dhf (a)
admet un maximum qui est atteint, si ∇f (a) ̸= 0, en ∇f (a)

||∇f (a)|| .
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Hessienne / Formule de Taylor-Young
à l’ordre 2
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Hessienne

Définition 38
Soit U ouvert de Rn et f : U → R une fonction de classe C2 et
a ∈ U. La matrice hessienne de f en a, notée Hf (a), est :

Hf (a) =
(

∂2f
∂xj∂xi

(a)
)

1≤i ,j≤p
.

Remarque: La matrice hessienne de f en a est symétrique.

Exercice 39: Soit A ∈ Mp(R) et f l’application définie sur Rp

par
f (x) = xT Ax .

Déterminer la matrice hessienne Hf (x).
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Formule de Taylor-Young à l’ordre 2

Définition 40
Soit U un ouvert de Rn et f : U → R une fonction de classe C2 et
a ∈ U. On a alors au voisinage de 0 :

f (a + h) = f (a) + df (a) · h + 1
2 hT Hf (a)h + o(∥h∥2).

Remarque: On peut aussi écrire le développement limité à l’ordre
2 sous la forme :

f (a + h) =
h→0

f (a) + (∇f (a) | h) + 1
2 (Hf (a)h | h) + o(∥h∥2).
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Théorème de scwarz
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Théorème de Schwarz

Proposition 41 [Théorème de Schwarz]
Soit f : U ⊂ Rn → R avec U ouvert de Rn.

Si f est de classe C2 sur U, ∀(i , j) ∈ [[1, n]]2, ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

(i.e. les opérateurs ∂i et ∂j commutent).
Plus généralement, si f est de classe Ck , pour toute
permutation σ de [[1, k]] et pour tout (i1, ..., ik) ∈ [[1, n]]k ,
∂k f

∂xi1 ..∂xik
= ∂k f
∂xiσ(1) ..∂xiσ(k)
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